Robust Power System Stabilizer Design using Particle Swarm Optimization Technique

نویسندگان

  • Sidhartha Panda
  • N. P. Padhy
چکیده

in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach. stabilizer, low frequency oscillations, power system stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Control of Power System Stabilizer Using World Cup Optimization Algorithm

In this paper, we propose a new optimized PID controller to stabilize the synchronous machine connected to an infinite bus. The model for the synchronous machine is 4-ordered linear Philips-Heffron synchronous machine. In this research, the parameters of the PID controller are optimally achieved by minimizing a definite fitness function to removes the unstable Eigen-value to the left side of im...

متن کامل

Robust Control of Power System Stabilizer Using World Cup Optimization Algorithm

In this paper, we propose a new optimized PID controller to stabilize the synchronous machine connected to an infinite bus. The model for the synchronous machine is 4-ordered linear Philips-Heffron synchronous machine. In this research, the parameters of the PID controller are optimally achieved by minimizing a definite fitness function to removes the unstable Eigen-value to the left side of im...

متن کامل

Design of Robust Power System Stabilizer Based on Particle Swarm Optimization

In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of PSO, not sticking into a local minimum, is used to eliminate the conservativeness of designing a static output feedback (SOF) stabilizer within an iterative solution of LMIs. The t...

متن کامل

Optimal Tuning of Power System Stabilizers Using Modified Particle Swarm Optimization

This study proposed a novel algorithm to tune and coordinate power system stabilizers (PSSs) in multi-machine power systems. For a multi-machine power system, the coordination of the PSS parameters is generally formulated as an objective function with constraints including the damping ratio and damping factor. A novel hybrid particle swarm optimization (PSO) with the passive congregation algori...

متن کامل

Robust Design of Decentralized Power System Stabilizers using Meta-heuristic Optimization Techniques for Multimachine Systems

In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008